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In the construction of  models of  multiphase media the effect of  the volume concentration of  inclusions on the 
force of  thermal interphase interaction must be taken into account. The theoretical investigation of  this problem has been 
the subject of  a great number of  studies, which have been reviewed in [ I, 2], for instance. It was shown in [ 1 ] that inter- 
phase interactions, generally speaking, depend on the kind of  distribution of  inclusions in the medium. The media usually 
considered are disperse media with two limiting schemes of  particular distribution within the medium: with a regular and 
with a random structure. Disperse media with a regular structure are investigated within the framework of  the cell method 
[ 1, 2]. Media with a random structure are investigated by using relations connecting the characteristics of  interaction of  an 
individual inclusion with the carrier medium for a specific arrangement of  the other inclusions and averaging them over the 
statistical ensemble by using the distribution functions of  the inclusions within the medium. At the same time the distribu- 
tion functions themselves depend on the interaction between the inclusions through the carrier medium. Hence, the problem 
of determining the distribution functions with due consideration of  this interaction is considerably complicated and for its 
solution, apart from rare exceptions [3 ], the simplifying assumption of  independence of  the distribution functions on the 
interaction of the inclusions is used [4-6]. The problem of determining the mean characteristics of the medium is still 
fairly, complex even when the distribution functions are known and, hence, for its simplification a specific form of inter- 
action of  the inclusion with the carder medium for a fixed distribution of  the other particles is assigned approximately. 
In [3] the description of  this interaction was confined to the dipole approximation, while the authors of  [5, 6] introduced 
the substantial assumption of  applicability of  the mean characteristics of  the medium, obtained by averaging over a volume 
containing many inclusions, for description of the flow near an individual inclusion. In the words of the authors of [5, 6], 
this assumption is not  rigorous!y justified, but leads to a considerable simplification of the calculations, and in [4] the 
physically understandable idea of  self-consistence was used. The assumptions made in [3-6] do not  allow a theoretical esti- 
mate of  the error that they introduce into the final relations. At the same time the error of  the various approximate 
approaches can be estimated by comparing the final approximate formulas with the accurate formula obtained in these few 
problems where an accurate result can be obtained. In this paper we consider the problem of vibrations of  gas bubbles in 
an ideal liquid in a case where the volume concentration of bubbles a 2 << 1. The flow potential of the liquid is written 
for an arbitrary distribution of  the bubbles. The mean values of  the potential and the square of  the velocity on the surface 
of  the sample bubble for a random distribution of  the other particles are calculated to an accuracy of  a z , and a generalized 
Rayle igh-Lamb equation is obtained. The effect of  inaccurate assignment of interaction of  the inclusions on the Rayle igh-  
Lamb equation is analyzed. 

We consider a one-velocity monodisperse mixture of  a low-viscosity incompressible liquid containing randomly 
distributed spherical bubbles of radius R on the assumption that the characteristic scale of  variation of  the mean mixture 
parameters (R, a 2, etc.) is much greater than R. 

The flow potential r of  the liquid for an arbitrary distribution of  the centers N of  the bubbles contained in volume 
V o bounded by surface Po is determined as the solution of the following equations with boundary conditions: 

0cp 
A~0=0,  ~ r = v i  ( i = 0 ,  t . . . .  N), 

where Pi(i = 1 . . . . .  N) is the surface of  the i-th bubble; n is the normal to the surface; vi ( i  = 1 . . . . .  N )  is the normal com- 

ponent of  the liquid velocity on the boundary of  the i-th bubble; v o is the normal component of  the liquid velocity, due 

to vibrations of  the bubbles, on the boundary of  the considered region. 

We will find ~ by the method of  successive approximations of  q~ = lim ~n by mirror images [7]. We first determine 

~0 o, the zeroth approximation of  ~0, 
N 

~0 = E ~o, 
i = l  

where ~ i ~ are determined as the solutions of  the following equations with boundary conditions: 

~176 cp~ for I r - r i l - - - ~ o o  ( i = 1 , 2 ,  N), AqD~=O, o~ r~=Vi '  - - ' ,  
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where r is the radius vector of  the point  at which the value of  the potent ial  is determined; r i is the radius vector of  the 
center of  the i-th bubble. 

We determine 91 , the first approximation of  9 ,  

N 
~ = ~0 + ~ ~ ,  

i = 0  

where ~0i~ are determined as the solutions of the following equations with boundary conditions: 

0 0 Aq0l=0 ,  ~(q~ +q~l) l r~=Vi  ( i =  0,1,  . . . , N )  

for i # 0, q~ --+ 0 when (r - -  r~[ -+ co. 

The subsequent approximations of  9 are obtained in a similar way. I t  can be shown that  the terms 9~ decrease as 

q~ ~ g,~'-~ ~ , where k >~ 1 ; R is the bubble radius; r~ is the distance between the bubbles. Hence, the method of  

successive approximations gives the potential  9 in the form of  a series in terms of  the parameter  R/r t . We note that the 

series constructed in this way for the potential  around two bubbles converges very rapidly to the exact potential  [7-10] for 
any (including the case of  contact) distances between the bubbles. 

I t  follows from the construction that the potential  9 is in the form of a sum of  terms ~i, each of  which for i = 1, 

..., N has no singularities outside the i-th boundary,  and 90 has no singularities anywhere in the considered region. 

The expounded method at each approximation (beginning with the first) takes into account the conditions on the 

boundary of  the mixture. This makes the analysis of  the potential  difficult. Hence, it is convenient to use (q~)' = ~ t  ~o, 

instead of  9o ~ ; the boundary need then be considered only in the first approximation,  i.e., ( 9o ) '  = 0 for n > 1. Henceforth 

we will use the above-described modified algorithm, and will omit the dashes on the corresponding potentials.  We will also 
consider bubbles situated far from the boundary and, hence, for them we can neglect the effect of  the specific distribution 
of the bubbles on (9  ~). Then it follows from the construction that  9 is in the form of a series whose terms are either 

independent  of  the position of any of  the bubbles (9o ~) or depend on the position of  only one ( 9 ~  or on two bubbles 

(such terms are contained in 9 n when n ~> 1), etc. We sum the terms ~c, which depend on the posit ion of  precisely l 

bubbles (l = 0, 1 . . . .  , N), then 

N 

,~ (r I r . . . . ,  r~,) = G X? (r),  Xo o = Xo (r), 
l - -o  

X~= ~ x l ( r l  r l l  . . . .  , r i l ) ,  (1) 
�9 cO N 

r i l , - . . , r i  l 

where X ~ depends on the posit ion of  only l bubbles; o x are combinations of  l from N bubbles (bubbles i l ,  i l 

are selected); XL (r,  r i  I . . . . .  r i l ) ,  depends only on the position of  the bubbles i 1 . . . . .  i l .  

We note that X ~ was constructed so that it  took into account the specificity of interaction of  precisely ! bubbles, 

and henceforth we will call • the/ -par t ic le  interaction. 

The bubble dynamics (e.g., the R a y l e i g h - L a m b  equation) is determined by the difference (q%) : ( % )  - -  (q~m), 

w h e r e ( % )  is the mean liquid potential  near the bubble surface; (qo~) is the meanliquid potential  at a point  corresponding 

to the center of  the bubble when it is not  there 

( % )  = - ~ o  q~ (rl  r~ rl  . . . . .  rN) fY+a (r~ rl . . . .  ' rN) d~rt " '" d~rN' 
r 1 , . . . , r  N 

<w.,> = j" .I ~ (to I r~ .... , r~) ]~r (r~ ..... rN I ro) d3rt "'" dSr2v, 
r 1, . . . , r  N 

(2) 

where fk(rl . . . .  , r k) is the k-particle distribution function; ~ is the N-particle distribution function on condition that the 

point  r o does not  belong to any of  the bubbles. We select a system of  coordinates with origin at the center of the sample 

bubble. Funct ion (q~d), generally speaking, takes different values at different points on the bubble surface. This leads to 

a difference in pressure on the bubble surface, which for slow processes (such that the pressure in the bubble is constant) 
will be balanced by small deformations of  the bubble. Hence, to derive the generalized R a y l e i g h - L a m b  equation within 
the framework of  the spherical-bubble model we need to Use the q u a n t i t y ( ( ~ ) ) a v e r a g e d  over the ensemble and the surface 
of  the bubble. For  ((q%)),  using (1) and (2), we can obtain 
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N N 

I = 1  / : 1  
(3) 

where R is the radius of  the bubbles in the mixture and I~ its derivative with respect to time. The first and second terms 
of  Eq. (3) correspond to alteration of  the flow due to the presence of  the sample bubble at the coordinate origin; the 
second term corresponds to the regular part of  this flow in the vicinity of  the sample bubble, while the third term appears 

owing to the difference in the distribution functions ]~(rl . . . . .  rNI0) and /.,,r+l(O, rl, : . . ,  Lv) 

<X~> = (a~.) z ~ -Vo X~+I (0 [r~ . . . .  , rz) /z+~ (0, rl, . . . ,  rz) d3rx ..  d3r~, (4) 
r l , - . .  ~ | 

( X ~ ) - - - - - ( a e ) z ( ~ )  z J'.t" %z(O]rl . . . .  ' r l ) [ /Tt(r l  . . . . .  rllO)--flq-l(O'rl . . . .  , rN)] day1.. ,  darz, 
r l , - - . , r  l 

where Z~+I (01ri, �9 �9 -, rz) are the terms in the potential [due to l + 1 particle interaction of  the (1) sample bubble, and 

l other bubbles] having singularities in any bubble, except the sample bubble. 

It is apparent from (4) that to determine <<q~d>>, accurate to (a:)~ it is sufficient to know the two-particle (binary) 

distribution function and the two-particle interaction and for determination of  <<r accurate to (a2)2 , we need to know 

the three-particle distribution function and the three-particle interaction, etc. 

Representation (4) has sense if the integrals <)~b)and<~{> have a finite limit when cx 2 ~ 0 and V o ~ oo. We note that 

for a disperse medium of regular structure the distribution functions fm and f have sharp spikes and these integrals tend to 

infinity whenc~ 2 ~ 0. Whence it follows that expansion (4) of<<q~d>>in terms of  (a2)t is not valid for disperse media 

with a regular structure (it can be shown that the first terms of  the correct expansion of<z~>and <z{)in this case are pro- 

portional to a ~/3 ). 

We will show that for media with a random structure expansion (4) is valid. To investigate the convergence of  the 

coefficients of  (ot2)1 the behavior of  the integrands when Ir~l-+ oo is important and, hence, in (4) we can confine ourselves 

to the main terms of  the expansion X~+iin terms of  R/lrll 

1,11 , / - Y ? i - )  

It  is apparent from (4) that for convergence of  the integrals <X~> and< X~> it is sufficient that the binary correlative 

function f2 (0, rl ) is bounded [f2(O, rl) < k 1] and differs from the one-particle distribution function ~(r~ I0) by not more 

than kz/Irll ~, where k a and k2 are constants. We note that the binary correlative function, corresponding to the rigid- 

sphere model [ 11 ], has exponential convergence to the one-particle function, and the binary correlative function obtained 
from the interaction of  inclusions with the carrier medium in the Stokes approximation [3] also ensures convergence of  
the coefficients of  a 2 in (4). 

Let the/-particle distribution function f~ (r I , ..., r~) satisfy the following conditions: 

ka 
/ , ( 0 ,  rl . . . . .  r 3 < k ~ ,  1I,+1(0, r l  . . . . .  r3 - - / ~ ( r ~ ,  . . . ,  r~10) l <  lmin(rl, , .  ...... r~)la' 

where k a and k 4 are constants. In the investigation of  the convergence of  the integrals for (a z)2 in (4) we can confine 

ourselves, as for the integrals considered above, to the main terms in R/rr] I in the expansion of  X 2 and Xb2 + 1' which have 
the form 

R 2 { ~ R  ~ " R 2 R 3 R 2 
"~ ;(2+I 

where 0 is the angle between the vector r 1 and the vector r:  - r I . Using (5) for a point not lying at the boundary of the 

region V o we can show the convergence of  the coefficients o f a  2. Estimates from the modulus of 9( 2 (as, for instance, 

Xb2+ 1 is estimated) are insufficient for convergence of  the integral<%~/>. In a similar way it can be shown that the coefficients 

of  (a2)~ converge. The above arguments show that in exPansion (4) the decrease in the terms when a 2 ~ 0 is correctly 

shown. 
We derive a generalized Ray le igh-Lamb equation accurate to o~2. In this case we can neglect the potential ~ 

contained in X~+I (0lrl . . . . .  rz), Zl(01rl, �9 �9 rz) , which is proportional to c~ 2 and, hence, as (4) shows, gives a contribu- 

tion at least quadratic in c~ 2 to the Ray le igh-Lamb equatiol~. 
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Fig. 1 

The analysis conducted above has shown that to determine <<q~d))accurate to (a 2)1 it is sufficient to know only 

the two-particle interaction. Hence we find the liquid flow potential ~2 for two growing bubbles of  radius R whose centers 

are at distance L. Using the method of  successive approximations by mirror images [7, 8] we find that ~2 can be represent- 

ed as a sum of potentials of  point sources and distributed sinks lying in a straight line connecting the bubble centers. The 

point sources are at points B i (see Fig. 1) at distances L i from the bubble centers. The quantities L i and the source powers 

C i are given by the following recurrent relations: L~ = l~2/(L - -  Li-1), L0 = 0; Ci = CI-1L~/R, C o = / P R .  The sinks 

are uniformly distributed on the segments BiBi+ 1 with a power per unit length d~ = C~+~/(L~+I--L~) �9 The described 

potential is an exact solution of  the posed problem. It allows determination of  the two-particle interaction of the sample 

bubble A with bubble M (see Fig. 1), situated at distance L. As (3) shows, the interaction X b agrees with the potential 1+I 
due to the whole system of point sources and distributed sinks situated in the bubble M, except the source at the center 
of  bubble M, which corresponds to one-particle interaction. 

In the calculation of  <(q~a>>accurate to a s we can neglect the corrections linear in a 2 to the binary correlative 

function and use the following simple expression [I 1], obtained for the case of  non-interacting spheres: 

fO, R < I r ~ I < 2 R ,  
f2 (h) = [1, 2R < [ r1[- (6) 

When the effect of  bubble interaction on the binary correlative function is proportional to a2,  Eq. (6) can also be 
used to derive the Ray le igh-Lamb equation. 

Integrals <Z,b>and<;~{>can be calculated numerically, accurate to o~. The final formula for <<q~d>>between the 

mean potential on the bubble surface and the mean potential in the liquid has the form 

<<q~e>> ~ --  R2/}II r l + 3.6~z2R/~. (7) 

We substitute the value of<<q~a)>in the Cauchy-Lagrange integral 

__~ I fi"- <~> p~ - 2 ~ l n  = ~(~> + -~-,;' (8) 
o t  <<Ca>>/,t=n § -2-- + --T-" + o 2 

where <v~>is the mean square of  the tangential velocity component of  the liquid on the bubble surface; <v~> is the mean 

square of  the liquid velocity at a point corresponding to the center of  the sample bubble; Pu and p, are the pressure in 

the bubble and liquid; a, p are, respectively, the coefficient of surface tension and density of  the liquid. In the deviation 

of (8) we used the fact that the normal component of the liquid velocity on the bubble surface, on the basis of  assumption 
of  its sphericity, is equal to R. 

From (1) we can obtain the following expressions for (v~> and <v~): 

r r, .. . ,r N 

, 'co t 2  

rl . ,- . . , rNS 

where S is the surface of  the sample bubble. 

Making estimates similar to those made in the deduction of Eq. (4) we can show that <v 2> and <v~> can be expanded 

in a series in terms of  a 2. The values of  <v 2> and <v~> are determined, accurate to (oq)l ,  only by the one-particle and two- 
particle interaction, respectively. Then 
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= • f ( 4dsdr, <v~> R" r J R  ~ L ~ ,} L 2 d L '  <v~>=~-~ , 
= L=2R S 

where v r. is the tangential component of the liquid velocity on the bubble surface, determined by the flow potential ~2, 
when the distance between the bubbles is L. 

The value of <v2> is determined analytically, and <v~> is calculated numerically: 

(v 2> ~ 3~2/} "2, (v~> ~ 3:25a,,/}'-. (9) 

Substituting (7), (9) in (8), we obtain the generalized Rayleigh-Lamb equation 

3 (/})2 (1 --  9,7~.z) - P 2 - -  2~/R - -  p, RI i} (t --  3.6a.z) + -2 o (10) 

The conducted analysis and the accurately derived Rayleigh-Lamb equation (10) enable us to analyze the error 
introduced by the simplifications often used in the theory of disperse media with randomly distributed inclusions. 

It  is apparent from (4) that corrections quadratic in ~2 to the generalized Rayleigh-Lamb equation depend, 
generally speaking, on the three-particle interaction of the inclusions, the three-particle distribution function and the 
conditions on the region boundary (~01). 

We analyze the error introduced by inaccurate assignment of the two-particle interaction between the inclusions. If  
we use (as in [31) only the main terms in R/rt in calculation of the interaction between the bubbles, the generalized 
Rayleigh-Lamb equation will take the form 

B/~ (1 --  4.5a,,) + @ (/})2 (1 --  t2a,) &--2z /n  --p,  (11) 

The generalized Rayleigh-Lamb equation has the same form when the idea of self-consistency, adopted in [4], is 
used. A comparison of (10) and (1 l) shows that the error in determination of the coefficients is approximately 20%. In 
view of the considerable simplifications obtained by the use of these assumptions [Eq. (11) is derived analytically], however, 
they can be recommended for an approximate assessment of the effect of volume concentration on the interphase interaction. 

The idea of self-consistency and some other assumptions enable us to obtain a correction, quadratic in a 2 , to the 

Rayleigh-Lamb equation. As was shown above, this correction cannot be determined accurately, which raises doubts as 
to the error of the linear term. In view of the great physical clarity of the self-consistent method and the improved 
agreement with experiment obtained in some studies [4], however, we can expect that when these corrections are taken 
into account these methods will allow an approximate calculation of the coefficients of (c~ 2)2, as was the case with 
corrections linear in a2" 
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